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Destination choice models can be embedded in transport and land use 
models to understand travel and location choice behavior and to forecast 
scenarios. Utility-maximizing destination choice models can account 
for individual behavior and make them suitable for agent-based mod-
els, while processing destination capacities is also in line with agent-
based modeling. This paper addresses the possibility and impact of 
introducing capacity constraints, their effect on choice behavior, and  
the feasibility of applying an approach like this in agent-based micro-
simulations with individual characteristics for each agent. Here, a com-
prehensive workplace choice model and its application in a large-scale 
simulation case study for Singapore are described; one technical and 
one methodological achievement are highlighted. Technical achievement 
benefits from recent computational advances; the workplace choice 
model is estimated with a comprehensive utility function on a large data 
set with 103 destinations. Reasonable model fit and robust parameters 
are achieved while obviating sampling techniques; resulting parameters 
are efficiently applied to the entire 5.4 million Singapore population and 
validated with survey data. For methodological innovation, capacity lim-
itations are introduced at workplaces to avoid oversaturation. A robust 
optimization method based on shadow prices is proposed to accommo-
date capacity limitations at all workplaces during the choice model  
application defined above. The proposed method efficiently assigns 
commuters to unused workplaces while respecting individual commuter 
preferences. Validation of the simulation results, by comparing travel 
time distributions for commuting trips reported in travel diary data, 
shows that the model fits well with observed data.

Destination choice is a central and challenging problem in transpor-
tation and land use modeling. It can be characterized by the discrete 
choice of a specific person between different destination alternatives 
in a given situation; a person living or staying at a certain origin has 
to choose between a set of discrete destinations—geographically 
distributed in space—before conducting a trip. Specific destinations 
are assigned to all individuals considered at destination choice mod-
els, for example, for shopping, for commuting trips, or for determin-

ing home locations for household distributions. Assignment differs 
depending on personal characteristics, trip purpose, set of alterna-
tives, and external environmental influences. In transportation, des-
tination choice has often been applied in the traditional, aggregated 
four-step model [see, e.g., Ortúzar and Willumsen (1)]; however, 
disaggregated models also rely on destination choice methods, as 
well as various land use models and location assessments [see, e.g., 
McFadden (2) and Ben-Akiva and Lerman (3)]. Unlike other dis-
crete choice situations, such as transport mode choice, destination 
choice has to deal with a very large number of choice alternatives. 
Multiple approaches exist to assign agents to specific destinations dif-
fering in data and computational requirements. The gravity approach 
basically mirrors Newton’s physical gravitation law and serves 
as a robust solution for trip-based destination choice when given 
a certain trip impedance function, for example, for commuting 
trips (1). This approach spreads a given demand over all destina-
tion zones according to their attractiveness and travel impedance 
and has been implemented in numerous small- and large-scale real-
world applications because of its robustness and low computational 
requirements. Destination choice can also be modeled with utility-
maximizing approaches, which determine a probability for every 
traveling individual and destination according to destination qual-
ity, personal taste, and situation [see, e.g., Daly (4)]. This approach 
is especially suitable for agent-based frameworks able to capture 
individual behavior heterogeneity. Utility-maximizing approaches 
also have a long tradition in choice modeling; a major advantage lies 
in their underlying sensitivity to individual characteristics and travel 
behavior, for example, employment type or income. Both individual 
attributes can be used as independent variables when individuals 
are assigned to workplaces in a specific economic sector. Utility-
maximizing approaches are, thus, more demanding about data and 
computational requirements in regard to destination choice. See 
Mishra et al. for a detailed comparison of gravity- and utility-based 
approaches (5).

One major difference between gravity- and utility-maximizing 
approaches is the consideration of capacity constraints at destina-
tions. In demand modeling, alternatives’ given capacity constraints 
are essential whenever market supply is limited for individuals in a 
choice situation. Capacity constraints should be considered in desti-
nation choice, as workplace locations have an upper limit for the 
number of workers accommodated. While capacity constraints are 
fully integrated in the doubly constrained, gravity-based approach 
and oversaturation is suppressed, capacity constraints are only par-
tially considered in utility-maximizing models, such as the multi
nomial logit (MNL) model (1). Utility-maximizing models implement 
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capacity limits to a certain extent with the utility function formula. 
However, this function consists of additional terms beyond capacity- 
related variables, and the parameter fitting does not exclusively 
consider the destination saturation, per se. Choice models allow 
for oversaturated destinations in their application. This paper pro-
poses an efficient method to apply constraints in utility-based model 
applications.

Of the various destination choice models, the focus here is on work-
place choice as part of the overall modeling process for a Singapore 
transport model. Commuting trips are very important because of their 
large share during peak hours; they often drive long-term investment 
in transportation infrastructure and spatial development.

Computational performance has improved steadily during the past 
few years, and recent advances allow parameter estimation for choice 
models on large (full) sample sets with sizable numbers of destina-
tion alternatives and complex utility functions. In addition, they allow 
model applications on populations as large as ∼1.9 million commuters, 
such as the present example in Singapore.

The aim of this paper is twofold. First, the workplace choice model 
should account for capacity-constrained destinations. Second, recent 
computational and technical advances should be exploited to obtain 
robust parameters and a reasonable model fit and apply parameters in 
a large-scale transportation simulation. The main research issues are 
how to (a) introduce capacity constraints in a location choice applica-
tion and (b) demonstrate the feasibility of applying such an approach 
in a large-scale application while accounting for destination choice 
heterogeneity.

These research questions are motivated by existing large, rich data 
sources, as well as increasingly limited land resources in growing  
cities. Singapore city recently conducted an extensive household 
travel diary survey containing relevant variables (6). In addition, 
detailed transport network graphs and travel times were available 
from previous work, along with information about population and 
workplace densities. These empirical data also allow comparison 
with modeling results. Singapore is a fast-growing city–state with 
a large population and significant workplace densities, generating a 
strong interest in efficient planning and spatial land use competition. 
It is therefore assumed that upper capacity constraints exist at certain 
travel destinations and that they should be included in a given trans-
port model. Furthermore, Singapore is only one example of a city 
with scarce (land and other) resources; many other urban areas are 
experiencing similar developments, making the Singapore case even 
more interesting and topical.

Destination Choice Modeling

This section highlights selected past achievements on (a) the meth-
odological side and (b) the data and sampling side. In regard to the 
methodological side, many papers have explored different discrete 
choice methods; for example, Vovsha et al. applied an MNL model 
with an encompassing utility function containing diverse descriptive 
variables (7). An MNL model can be computationally efficiently esti-
mated for destination choice purposes, thus accommodating a large 
number of alternatives and complex utility functions. Modelling the 
Choice of Residential Location was a seminal paper on residential 
choice with several model formulations (2); other studies applied 
complex choice methods and destination choice models to specifically 
account for unobserved similarities between destination alternatives. 
Bekhor and Prashker summarized and compared generalized extreme 
values models with relaxed independent and identically distributed 

assumptions with the MNL model to capture some unobserved simi-
larities between the alternatives: the nested logit, cross-nested logit, 
generalized nested logit, spatial correlated logit model, and a com-
bined model (8). All of these models have specific pros and cons for 
model characteristics, complexity, and computational burdens. As 
far as destination choice, the spatial correlated logit model deserves 
special attention because of its consideration of adjacent zone pairs, 
possibly spatially correlated (9). One could also add the generalized 
spatially correlated logit model, which considers spatial distances 
between all alternatives, compared with just adjacent alternatives in 
the spatial correlated logit model (10). Along with the model theory, 
solution algorithms are crucial for model applications; they depend 
strongly on model formulations. A closed-form model formulation 
can be solved with direct maximum likelihood techniques, compared 
with other formulations that require more challenging numerical- and 
simulation-based approaches [e.g., Koppelman and Sethi (11)].

In regard to the data and sampling side, sampling techniques in 
destination choice models have been widely discussed because of 
their large choice sets. McFadden provided techniques for sampling 
(2). Frejinger et al. (12) and Neralla and Bhat (13), as well as others, 
proposed sampling methods and found that a large number of obser-
vations are needed to achieve reasonable model parameter values. 
Neralla and Bhat suggested drawing 1∕8 of the full choice set size as 
a minimum and 1∕4 as a desirable sample share in the case of their 
MNL models, stating that non-MNL models are even more demand-
ing in regard to the required sample size (13). Recently, a trend has 
begun to calibrate model parameter for destination choice models 
with the entire set of alternatives and to avoid sampling techniques 
of the destination alternatives. This approach has the advantage 
that sampling techniques are avoided; even complex models can be 
applied without worrying about sampling strategy. Parameter cali-
bration without data sampling is done, for example, in school choice 
models in which pupils select between different schools (14); the 
choice set here is the potential school set in a given area. In regard to 
workplaces, the potential workplace set is considerably larger; these 
are then aggregated into zones to achieve reasonable calculation 
times, as calculation time linearly (approximately) increases with 
the number of alternatives (3).

Capacity Constraints and Shadow Prices

Assuming a utility-based workplace choice model accounting for 
generalized travel costs, destination quality, and personal and situ-
ational variables, it can be argued that workplace choice has to incor-
porate market competition for more centrally located workplaces, for 
example. However, competition and market equilibrium for attrac-
tive workplaces and low rents take place on a firm level with a 
different utility function. Therefore, one cannot, a priori, assume a 
market clearing situation for workplace location choice, as might 
be the case in housing and residential location [see, e.g., McFadden 
(2) and de Palma et al. (15)]. Certain issues might lead to over- and 
undersaturated workplace locations after a utility-based destination 
choice model is applied.

1.	 Destination choice models obviously depend heavily on the 
survey data. Whenever survey data are stratified or biased on spatial 
attributes, it can be assumed that certain (commuting) behaviors are 
not well captured for a given stratum in the model. It is possible 
to overcome this problem by estimating parameters for the under
represented strata, but a certain parameter bias can be expected to 
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persist after parameter estimation, meaning a bias in destination 
choice model applications.

2.	 Recent, very elaborate discrete choice models can deal with 
complex choice situations, for example, spatial correlation (see also 
section on modeling destination choice). However, it is still possible 
that not all correlations are actually captured in the model, making 
systematic errors possible.

3.	 The perception of generalized travel costs might not be propor-
tional to actual costs; for example, Vovsha et al. included a differenti-
ated distance function composed of six terms (7). One can assume 
that the perception could be approximated with complex functions, 
but residual errors might still remain and bias modeling outcome.

4.	 Even if a perfectly fitted model is assumed on the basis of a 
representative data set, parameter values might have to be changed 
in scenario applications. For scenarios with changing destination 
capacities, commuters might not be completely reassigned to all 
changing destinations because of the influence of the generalized 
travel costs (an alternative specific variable but one that completely 
ignores capacity).

5.	 Assuming an imperfect model for one of the above reasons, 
even a small oversaturation can lead to errors when results are eval
uated and interpreted, for example, for business developments in 
over- and undersaturated destinations, as well as related traffic flows.

Shadow prices are proposed to account for many of these issues 
in destination model applications. Shadow prices are applied differ-
ently in various studies. In linear programming, they derive from 
the dual solution, while in economics, they are used to estimate 
unknown costs of a certain good or alternative. In the following, 
shadow prices serve as an additional impedance for attractive, but 
limited, capacity alternatives. Shadow prices should reflect alterna-
tives’ constraints, as explained in the following example based on 
microeconomics and productivity optimization. A price p > 0 can be 
assumed, as well as a stock of X with sold units x, where 0 ≤ x ≤ X 
and the objective max(px). Customers buying units x optimize their 
utility u, with respect to their time and budget limits, giving one (at 
least) two dependent optimization problems. Any resource is consid-
ered a constraint (e.g., time and units) if the number that customers 
would like to use exceeds the number available. In an inefficient 
market, it might be possible that demand exceeds supply because of 
distributional effects; then, a shadow price must be implemented to 
allow solution of the optimization problem (16). This idea of shadow 
prices is transferred and adjusted for destination choice situations.

In destination choice, shadow prices can be assigned to desig-
nated destinations and regarded as additional impedance for people 
choosing those destinations. Shadow prices can thus account for 
these alternatives’ constraints, which cannot be captured with model 
parameters, or the error term (ε) choice model distributions. Higher 
prices also indicate scarcity, which means that shadow prices also 
uncover future spatial development potential of underdeveloped, or 
even missing (but potentially valuable), alternatives. The current lit-
erature provides little discussion of shadow prices and their effects 
in choice models. Shadow prices are applied in some studies, but 
a detailed method and references are missing, as well as definition 
and price effects. Gupta et al. (17) used shadow prices for park-
and-ride lots to identify the best parking lot, as did Davidson et al. 
(18). Hammadou and Papaix applied shadow prices in a mode choice 
model for carbon dioxide pricing (19). De Palma et al. modeled the  
housing market and provided a detailed definition of shadow prices 
(15). They stated that supply and prices in the housing market might 

clear the demand, depending on the specific situation; they presented 
algorithms for constant and variable demand in this context (15). 
Workplace models described in this paper are different [compared 
with, e.g., de Palma et al. (15)]; office rents, in particular, are not 
fully mirrored in employees’ utilities. Therefore, an employee’s util-
ity is not directly affected when choosing a workplace, compared 
with an otherwise identical workplace with lower rents.

Some researchers focused on joint travel and residential costs and 
formulated mathematical programs. Beckmann and Wallace intro-
duced shadow prices, similar to the proposed approach, for welfare 
maximization of home location changes with infrastructure changes, 
including housing rents (20). Los modified the utility function, trans-
portation, and residential costs to improve residential choice and the 
usage and impact of transportation (21). Earlier issues discussed 
remain mostly open according to the literature review; more detailed 
definition and knowledge about shadow price effects will be relevant 
for future applications.

Data Availability in Singapore Case Study

In this study, a destination choice model was estimated according 
to a revealed preference household travel survey conducted for the 
entire island of Singapore, a city–state located in Southeast Asia, 
encompassing an island 43 km long and 23 km wide, with a perma-
nent 2014 resident population of 3.8 million and a total population of 
about 5.4 million. In gross domestic product per capita, Singapore is 
one of the wealthiest countries in Asia, but specific regulation directly 
controlling the number of registered vehicles, as well as high taxes, 
keeps the car population in Singapore comparably low; 35.1% of all 
households have one or more privately registered cars available, and 
48% have some type of motorized vehicle available.

Household Interview Travel Survey

The Household Interview Travel Survey is conducted every 4 to 
5 years (6). The last was conducted between June 2012 and May 2013 
(further referred to as “HITS 2012”) by the Land Transport Author-
ity of Singapore; Singaporean citizens, permanent residents, and 
legal immigrants residing there were included in the survey. Data 
of 9,635 households, 35,714 people, 70,984 trips, and 85,880 legs 
were collected in HITS 2012, providing a substantial sample of the 
population and travel behavior. Selected households were drawn 
systematically within the country of Singapore.

There are 12,292 trips to workplaces reported in HITS 2012, while 
weekend trips and trips to schools by students are excluded in this 
number. Of all commuters, 20.5% drove to work by car, 5.9% were 
car passengers, and 64.2% took public transportation; the remain-
ing share includes company buses (5.6%), motorcycles (3.9%), 
taxis (3.6%), and other modes. In HITS 2012, origins and destina-
tions were identified by their zip codes. In Singapore, nearly every 
building has its own zip code (generally a single high-rise build-
ing), resulting in approximately 163,000 zip code entries, including 
spatial coordinates. This system is advantageous; coordinates are 
known for every trip origin and destination.

For the workplace choice model, the model is generated for use 
with a synthetic population [see Sun and Erath for more details (22)], 
with a limited number of descriptive variables. Therefore, certain 
variables are ignored during model estimation because they are 
unavailable for the synthetic population. Occupation and individual 
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income are considered essential variables for workplace choice mod-
eling. Both person-related variables are available in the synthetic 
population and could be included in the utility function; however, 
individual income was favored as it allows potential future income 
changes and future scenario adaption. The authors are also aware 
that occupation might result in substantially important parameters; 
however, the overall purpose and future model application (see the 
section on the method) were reasons to consider only the income 
variable. Income is subdivided into 12 categories from $0 to above 
$8,000 a month per person.

Spatial Data

Spatial data in the destination choice model provide mainly informa-
tion about destination characteristics, such as number of workplaces. 
In addition, spatial attributes can be linked with personal attributes in 
generalized utility functions.

The Singaporean Master Plan contains detailed information on 
current and planned land use on the island and includes medium-
term spatial plans with a 10- to 15-year planning horizon, compared 
with the concept plan, with a longer horizon and feasibility studies 
with shorter time horizons (23). The master plan divides the entire 
island into ∼11,000 zones comparable with a parcel size and assigns 
different land use types; it also defines transport infrastructure such 
as roads and stations. Land use types used in the master plan are 
aggregated to reduce the number of model parameters. There are 
1,169 zones used for spatial aggregation of workplaces into a rea-
sonably large choice set; however, not all zones contain workplaces 
(e.g., forests and bodies of water). The following list details different 
land use types:

•	 Business,
•	 Commercial,
•	 Residential,
•	 Transportation,
•	 Services,
•	 Recreation,
•	 School, and
•	 Open.

The number of Singapore workplaces is not captured by any cen-
sus; it is derived separately through reported travel patterns and 
destinations’ designated land use types. Ordóñez Medina and Erath 
described the applied workplace distribution model to determine 
workplace distribution on a building level and, finally, on an aggre-
gated zonal level (24). Travel time serves as a major variable for 
generalized travel cost estimation; calibrated car travel times and 
transit travel times are available from the current detailed, but 
aggregated, model of the Land Transport Authority. They could be 
replaced with updated travel times from this simulation when it is 
completed.

Method

This section has three parts; most relevant background information 
is provided initially, including the overall model’s aim and its pre-
requisites. The second part explains the workplace choice model 
and its underlying utility function. The third addresses capacity con-
straints at destinations in the workplace choice model application 
defined in the second part.

The workplace choice model is part of an overall transport model 
for real-world model applications in Singapore and should be capa-
ble of reproducing future scenarios with future transport projects, 
for example, toll stations, new mass rapid transit lines, and large-
scale urban and industrial developments. Besides infrastructure 
changes, Singapore is interested in behavior changes resulting from 
changing personal factors, such as income or travel time. Therefore, 
the model should be applicable for those purposes, with appropriate 
sensitivity, calculation times, and reasonable complexity.

The model is embedded in a demand generation process, which 
includes additional models to generate the entire synthetic popu-
lation, household choice of owning a car, and having a driver’s 
license. The decision on how to go to work is also made by apply-
ing an MNL model based on available synthetic population data 
(35.2% of the population go to work on weekdays according to 
the census). Choices on going to work and location are modeled 
sequentially. Descriptions of secondary location choice and addi-
tional trips for leisure and shopping are determined after workplace 
location choice and are not reported in this paper. In regard to trip 
chaining, reported trip chains in HITS 2012 contain fewer trips than 
would be the case in other countries. Shares of home–work–home 
tours are approximately 43%, home–education–home are 27%, and 
home–leisure–home are 9%. Currently, the work destination model 
and secondary location choice are applied consecutively because of 
reported data. After demand generation, MATSim, an agent-based 
microsimulation platform, simulates physical movements in the 
given infrastructure network and optimizes travel utility related to 
departure time, secondary location, travel mode, and joint trips (25).

Workplace Choice Model Method

The literature contains discussion of various methods (see above) 
outlining the current trade-off between complexity and low cal-
culation time. An MNL model approach is chosen for the current 
study, largely because of the reasonable calculation times, even 
for a large data set. Moderate calculation times are also a factor in 
implementing and estimating a complex generalized utility func-
tion, with the (hopefully) small risk of biased parameter values for 
explanatory variables, resulting from unobserved spatial correla-
tion. For more detail, Beckhor and Prashker estimated the potential 
parameter difference between different models (8). A rather large 
data set of 12,292 commuting trips is available for this study; the 
calculation time is quite high given the number of alternatives (6). 
Despite the large data set, sampling of the alternatives was omitted, 
and all model parameters were estimated with the entire data set 
and all destination alternatives. The resulting additional calculation 
time overhead was manageable, and sampling uncertainties were 
thus avoided. Technical specifications are described in the section 
on the results. If a sampling method had been chosen, a minimum 
sample size of at least 300 destinations would have led to reasonable 
parameter values. Since calculation time (approximately) scales lin-
early with the number of alternatives, the additional overhead of 
four times, at most, is considered reasonable (3). The sampling itself 
is also expensive in calculation time, as well as being dependent on 
the choice model.

Utility Function

The initially considered utility function consists of a personalized 
mode choice log sum term and generalized utility to combine per-
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sonal attributes (e.g., income) with given land use types, similar to 
the method in Vovsha et al. (7). The utility function for origin i and 
destination j is defined in Equation 1, whereas all indicated com-
ponents of Equation 1—weighted with γ—are explained in the sub-
sections below. The utility function excludes an accessibility term 
similar to that in Vovsha et al. because it is assumed that accessibility 
describes mainly the distance-weighted quality of the surrounding 
area; not the destination alternative itself (7).
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Generalized Travel Cost Decay

The generalized cost (c) decay function consists of a linear combi-
nation of mainly nonlinear travel cost modifications. Travel time is 
considered the main component of generalized travel costs and is, 
thus, included in the model. In addition, a mode-specific (m) estima-
tion is conducted on the basis of car ownership, considered a major 
influence on travel behavior.

Mode Choice Log Sum

The mode choice log sum contains the utilities u of each mode m 
for a given origin–destination relationship i–j. Consideration of all 
modes can be justified because workplace choice is a long-term 
decision. Even if a person has a car-oriented travel behavior (which 
is reflected in the log sum), a specific workplace might still be more 
attractive if it is also accessible via public transport.

A separate mode choice model was estimated to determine differ-
ent variable weights. Currently, an MNL model is implemented for 
car (including car passenger), transit, and others. Minor modes are 
not considered at this point, even though they might be relevant in 
some model applications.

Mode choice itself is a rather short-term decision because it deter-
mines the choice for a single specific trip and often includes travel 
time with a linear weight (in this research also). In addition, the mode 
choice term can correlate with the generalized travel cost decay func-
tion. Therefore, detailed experiments were conducted with the mode 
choice utility (but with a minor effect on the model fit, as described 
in the section on results).

Generalized Utilities for Land Use  
Types × Personal Variables

Generalized utility matches personal attributes with alternative spe-
cific attributes. For land use types, corresponding workplaces might 
be linked to a specific person type. Because of the envisaged future 
scenario applications, income is considered a more reliable predic-
tion variable than occupation types. Income is thus further con-
sidered in the destination model. Generalized utilities replace to a 
certain extent the distance perception separation by income similar 
to in Mishra et al. (5).

Shadow Prices for Capacity Constraints  
at Destinations

In the following, shadow prices are defined as disutility added to 
destinations as a result of capacity restrictions. So, shadow prices 
are positive and are negatively perceived by choice makers. The 
following three assumptions are made for shadow price calculation: 
In Assumption 1, it is assumed that the number of workplaces at a 
given destination is known and fixed for the entire time; in Assump-
tion 2, the demand at all origins is known and fixed and remains that 
way for different saturation levels at destinations; and in Assump-
tion 3, choice model parameters are given beforehand. It is clear that 
the second assumption is critical in very specific destination choice 
models, for example, restaurant choice during evening peak hour. 
For workplace choice, Assumption 2 might be less critical but obvi-
ously depends on the study’s economic situation. The third assump-
tion is also critical because model parameters might be influenced 
by a given saturated market situation. For future research, it would 
be interesting to know by how much perceived weights or elastici-
ties of generalized travel costs based on a hypothetic questionnaire 
differ from weights or elasticities of reported trips. Solutions might 
be found to overcome the additional complexity of Assumption 3, 
for example, the use of specific questionnaires.

In the following, it is assumed that there is a certain balance 
between the number of workplaces provided by companies and 
authorities and the number of commuters and their destinations. 
On the one hand, it is probably rare to have more workers at a 
designated place than indicated in the workplace survey data. On 
the other, it might be possible to have certain vacant workplaces. 
Therefore, an assignment balance is assumed with a certain upper 
restriction determined by the maximum number of workplaces, 
which should not be violated in the model. It can be assumed that 
this balance cannot be fixed deterministically; therefore, an itera-
tive procedure is derived and proposed to approximate this bal-
anced situation [similar to that in Spiess, who addressed parking 
lot capacities (26)].

Starting with the utility-maximizing approach, the probability pi,j 
of choosing an alternative destination j based on origin i is defined as
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where ui,j is the deterministic utility of alternative j and Pi is the num-
ber of people commuting from origin i (a building or a zone). Per-
sonal attributes and situational attributes are ignored in Equation 2 by 
omitting corresponding indexes. However, personal and situational 
attributes might be considered, as well.

By applying the Kuhn–Tucker conditions, it can be shown that the 
following convex minimization problem is equivalent to Equation 2;  
it is feasible because the function is partially differentiable (27):
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Now, capacity restrictions, such as Cj for destination j (Equation 3c), 
are simply added to the constraints of the optimization problem above 
(Equations 3a and 3b).

g C ci j j

i

(3 ),∑ ≤

The number of employees should not exceed the number of work
places available (Equation 3d), or the problem above becomes 
infeasible. This requirement is assumed as given beforehand. How-
ever, the proposed approach is also applicable if Equation 3d is 
violated, resulting in oversaturated destinations.
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Vectors λ1 and λ2 are added as Lagrange multipliers to determine 
the Lagrangian L; λ1 has a length of i, and λ2 has a length of j:
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Now, optimality conditions of Equation 4 are (λ2 ≥ 0):
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Vector λ2 ensures that capacities are not exceeded and is therefore 
referred to as the shadow price. Unlike Equation 3a through 3c, the 
dual problem Equations 6a and 6b comes without constraints; λ1 
and λ2 can be determined by solving Equations 6a and 6b iteratively.

For efficiency, all variables in Equations 6a and 6b are trans-
formed: α = e−λ1, β = e−λ2, Ui,j = e−ui,j, where α, β, U > 0 and β < 1:

i U P ai j i j i

j
∑α β = (7 ),

i U C bi i i j j

i
∑β α ≤ (7 ),

Efficient Algorithm to Determine Shadow Prices

Algorithm 1 describes an iterative procedure to determine shadow 
prices. The threshold value, t, describes how much capacity should 
not be exceeded by a given destination. For example, t = −2 means 
that capacity can be exceeded by a maximum of 2. Algorithm 1 
approximates a balanced situation within an adequate number of 

iterations, in which all commuters are assigned to a workplace. On 
one side, shadow prices λ2 can be viewed as an additional (nega-
tive) utility for each person to respect capacity constraints. On the 
other side, λ2 reflects the future spatial development potential of 
underdeveloped, or even missing, but valuable, alternatives. Over-
all, it might be possible that results similar to those achieved with 
Algorithm 1 could be obtained by randomly assigning weights to 
locations; however, it is definitely worth knowing how to efficiently 
approximate a balanced situation, in which all commuters find a 
designated working location.

Algorithm 1. Shadow price calculation:

n ← 0

βn ← 1

while C − P < t do

Calculate the demand gi,j,n for each pair i, j according to Equations 5 
and 7a:

i i

i
(8), ,

,

,

g
P U

U
i j n

i n i j

n i j

j
∑

←
β
β

Recalculate the β parameters according to Equations 5 and 7b:

ic

g
n

j n

i j n

i
∑

β ←
β













+ min ,1 (9)1

, ,

n ← n + 1

end while

Shadow prices: λ2 ← −log(βn+1)

Terminate

Results

The results section contains two parts. The first part describes the esti-
mated destination choice model results, and the second part outlines 
the outcome of the applied shadow price method.

Destination Choice Model

An MNL model approach is chosen for this study; a comprehen-
sive generalized utility function based on the above discussions is 
included. The MNL model results are described below for each utility 
function element listed in the section on utility function:

1.	 The nonlinear mode-specific (m) generalized cost (c) decay 
function f0,m consists of f0,m = γ0,m (η0,m • cm + η1,m • c2

m + η2,m • log(cm)). 
In this study, m accounts for car availability, as mentioned above, and 
c includes travel time as a major component of the generalized costs. 
Experiments with additional components were conducted, such as 
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c3 and √c. Not all of the η’s were clearly significant; overfitting is 
avoided by selecting only robust elements for f0,m. Perception of costs 
is clearly nonlinear; η values are listed in Table 1 and were kept fixed 
during the determination of all other parameters. Additional person- 
or household-based variables could be incorporated for m instead of 
car availability.

2.	 In all conducted experiments, the mode choice log sum term 
correlates with car and transit time (parameter correlation of 0.7 to 
0.8) and does not add to the overall model fit; it is therefore ignored 
in the final model. It is proposed that the main influential variables 
in the mode choice model should be incorporated as personal vari-
ables, as shown above (as m) or in the generalized utility function 
explained below.

3.	 The workplaces are transformed with the logarithm because of 
a considerably higher ρ2 for model fit and theoretical necessity (28). 
This transformation also reduces correlation with travel time and 
is in line with Vovsha et al. (7). Besides workplace as an isolated 
independent variable, the generalized utilities include the following 
combinations (see Table 2):

– Number of workplaces related to business activities × 
income categories,

– Number of workplaces related to commercial activities × 
income categories,

– Number of workplaces related to residential activities × 
income categories, and

– Number of workplaces related to service activities × income 
categories.

The remaining categories—“school,” “recreation,” “transport,” 
and “open”—are not significant in most combinations; thus, they 
are removed from the model. Considered parameters for generalized 
utilities are significant through many different model estimations. 
Considered variables and parameters might contribute to a specific 
stratum, but their contribution to the overall model fitness is rather 
low because every parameter can contribute only in its very specific 
combination, for example, when the utility for a person with a high 
income traveling to a business zone is calculated.

Figure 1, a and b, shows travel time and cumulative travel time 
distributions after the workplace choice model is applied to the entire 
synthetic population of Singapore, comparing this with travel times 
reported in HITS 2012. Both figures show that overall population 
travel distributions match the survey distribution. Minor differences 

TABLE 2    Workplace Choice Model Generalized Utilities Combinations

Incomea Value t-Test p-Value Incomea Value t-Test p-Value

Log for Business Workplaces Log for Residential Workplaces

500 0.0289 2.59 .01 500 −0.101 −5.20 .00

1,250 0.0829 8.26 .00 1,250 −0.089 −4.82 .00

1,750 0.0859 11.38 .00 1,750 −0.169 −12.03 .00

2,250 0.0849 11.76 .00 2,250 −0.182 −13.38 .00

2,750 0.0841 9.59 .00 2,750 −0.251 −14.50 .00

3,500 0.0791 10.51 .00 3,500 −0.276 −18.45 .00

4,500 0.1010 10.67 .00 4,500 −0.252 −13.19 .00

5,500 0.0743 6.51 .00 5,500 −0.298 −12.77 .00

7,000 0.0924 7.19 .00 7,000 −0.257 −9.76 .00

Above 8,000 0.0639 5.78 .00 Above 8,000 −0.314 −14.46 .00

Log for Commercial Workplaces Log for Service Workplaces

500 0.060 5.17 .00 500 0.0568 4.32 .00

1,250 0.127 11.85 .00 1,250 0.0030 0.24 .81

1,750 0.126 15.62 .00 1,750 0.0644 7.04 .00

2,250 0.125 16.32 .00 2,250 0.0417 4.78 .00

2,750 0.112 12.22 .00 2,750 0.0586 5.51 .00

3,500 0.125 15.94 .00 3,500 0.0427 4.73 .00

4,500 0.129 12.99 .00 4,500 0.0327 2.80 .01

5,500 0.130 11.19 .00 5,500 0.0253 1.82 .07

7,000 0.163 12.40 .00 7,000 −0.0175 −1.09 .28

Above 8,000 0.194 17.73 .00 Above 8,000 0.0309 2.41 .02

aMonthly personal income in Singapore dollars.

TABLE 1    Workplace Choice Model Parameters

Parameter Value t-Test p-Value

Travel time decayHouseholds with car (γ0 car) 1.19 82.30 .00

η2,car
a −1.0 na na

Travel time decayHouseholds without car (γ0 no car) 1.08 74.06 .00

η0,no car
a −0.121 −8.91 .00

η2,no car
a −0.688 −30.12 .00

Log (work capacities) 0.262 31.95 .00

Note: na = not applicable.
aThe remaining η-parameters were irrelevant.
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FIGURE 1    Kernel distributions of travel times and cumulative travel time distributions for entire synthetic 
Singapore population: (a) distribution after workplace choice model application, (b) cumulated distribution after 
workplace choice model application, (c) distribution after Iteration 1, (d) cumulated distribution after Iteration 1,  
(e) distribution after Iteration 10, and (f ) cumulated distribution after Iteration 10.
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can be observed for very short trips, which are not captured prop-
erly in the data source; destination zone granularity hampers pre-
cise value determination for these trips. Distance perception is not 
captured correctly in the model parameters for very short trips.

Figure 2a shows the scatter plot for all destinations and their 
saturation after the workplace choice model is applied. In addition, 
Figure 2b shows the destination density, with a given number of 
workplaces, to reflect the distribution of different-size destinations; 
those with smaller capacities are mostly oversaturated, whereas des-
tinations with higher capacities are undersaturated, mainly because 
of the specific workplace distribution in Singapore. This observa-
tion is noteworthy because some bigger industrial zones are located 
in outlying areas and on smaller islands.

Model computation time was about 3 days (mainly because of gen-
eralized utilities) with Pythonbiogeme on a Linux computer featur-
ing an Intel Xeon 3.07 GHz processor and 30 GB RAM (29). Various 
experiments with different parameter combinations showed robust 
parameter values.

Shadow Prices

Algorithm 1 is applied to determine the shadow prices of each zone j, 
relying on the number of workplaces in j, which is independently 
derived from separate data (see the section on spatial data). The 
algorithm converges to an optimal solution. Figure 1 shows estimated 
synthetic population travel time distributions compared with the 
travel time distribution of HITS 2012, during an iteration selection of 
Algorithm 1. Figure 1, a and b, shows results after Iteration 0, which 
basically applies the workplace choice model without shadow price 
modifications (Iteration 0 in Algorithm 1 has β0-values = 1). Figure 1, 
c through f, displays the results after Iterations 1 and 10, respectively.

Figure 1, c through f, depicts minor changes in travel times com-
pared with HITS 2012 and compared with Figure 1, a and b, because 
of the reassignment of the commuters to workplaces and because 
workplace data are estimated; a certain additional deviation from 
real workplace numbers might occur. Despite these changes, the sta-
tistical model fit improves during Algorithm 1 iterations. There is an 

(b)

Capacity of Workplaces (log)

N
u

m
b

er
 o

f 
A

g
en

ts
at

 W
o

rk
p

la
ce

s 
(l

o
g

)

W
o

rkp
laces

N
u

m
b

er
 o

f 
A

g
en

ts
 a

t W
o

rk
p

la
ce

s 
(l

o
g

)

Capacity of Workplaces (log)
(a)

(c)

N
u

m
b

er
 o

f 
A

g
en

ts
 a

t W
o

rk
p

la
ce

s 
(l

o
g

)

Capacity of Workplaces (log)
(d)

N
u

m
b

er
 o

f 
A

g
en

ts
 a

t W
o

rk
p

la
ce

s 
(l

o
g

)

Capacity of Workplaces (log)

W
o

rkp
laces

FIGURE 2    Regression and heat map with workplace capacities and saturations based on synthetic Singapore population: 
(a) saturation after workplace choice model application, (b) number of workplaces and saturation after workplace choice 
application, (c) saturation after Iteration 1, and (d) number of workplaces and saturation (Iteration 1).

(continued on next page)
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increase in ρ2 and a considerable decrease in the log likelihood, as 
summarized in Table 3. This result means that, statistically, model 
prediction is improved during Algorithm 1 application when com-
pared with a standard MNL model application. It seems that Algo-
rithm 1 is capable of further improving overall model prediction 
and even correcting certain data uncertainties, as mentioned above.

Figure 2, c through f, shows saturation of Iteration 1 and 10, similar 
to Figure 2, a and b, as explained above. Some over- and undersatu-
rated workplaces can still be found in Iteration 1 (Figure 2, c and d), 
whereas workplaces are almost completely saturated in Iteration 10 
(Figure 2, e and f ).

Figure 3a shows the spatial distribution of the Singapore population, 
3b shows work utilities, and 3c shows shadow prices (λ2 = −log(β)).  
It is clear that work utilities and shadow prices are often complemen-
tary. Knowledge about shadow prices can support location analysis 
and planning for spatial development.

Destination choice model application for the whole synthetic popu-
lation (∼1.9 million commuters) takes about 5.5 h for Iteration 0 and 
1.2 h for each subsequent iteration, as well as considerable memory, 
about 50 GB (one thread on an Intel Xeon 3.07 GHz).

Discussion and Outlook

Today, destination choice models with elaborate utility functions can 
be applied on the basis of large data sets and many destinations. In 
addition, destination capacity constraints can be efficiently imple-
mented in large-scale, agent-based models while maintaining choice 
heterogeneity. The proposed approach introduces shadow prices at 
destinations, which are able to avoid oversaturation at popular loca-
tions. The paper’s proposed method is successfully applied to deter-
mine shadow prices for each zone in Singapore. Shadow prices can 
also help predict the future spatial development potential of under
developed, or unused and valuable, destination alternatives. Accord-
ing to the experiments and results, the travel time distribution of all 
trips changes only slightly during workplace assignment optimization 
compared with an empirical reference sample distribution.

The method is applied on data for all of Singapore island, which 
is isolated from the mainland except for two bridges to Malaysia, 
one international airport, and ferry connections. Geographic border 
effects might still occur in the island model or in potential future 
applications in mainland areas. Influence of people from areas out-
side the model perimeter might also affect shadow price calculations 
pertaining to outlying areas in the model and other areas easily acces-
sible from outside the model perimeter. These external influences 
are difficult to capture quantitatively; however, the type of influence 
is probably similar to “border effects” occurring in other transport 
models, for example, at route choice. Overall, care is required in 
these areas when results are interpreted. Additional studies might 
also reveal the quantitative extent of these effects.

In addition to trip destination choice application, location choice 
for primary location (household and firm locations) can potentially 
benefit from the proposed method. Parking, battery-charging stations 
(e-mobility), and other capacity restraint activities might also profit 
from the proposed method, along with transportation modeling, spa-
tial economics (as mentioned above), and resource distribution, in  
a wider sense (26). The proposed shadow price method, however, 
does not replace any alternative specific variable. Also, calculation 
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FIGURE 2 (continued)    Regression and heat map with workplace capacities and saturations based on synthetic Singapore 
population: (e) saturation after Iteration 10 and (f ) number of workplaces and saturation (Iteration 10).

TABLE 3    Workplace Choice Model Statistic

Model Statistic Value

Number of observations 12,292

Number of alternatives (excluding green 
spaces, bodies of water, and so forth)

1,087 

Initial log likelihood −85,416

Final log likelihood −75,556

Final log likelihood (Iteration 10)a −71,035

ρ2 .115

ρ2 (Iteration 10)a .168

aBased on census data and application of Algorithm 1.



(a)

(b)

0 105 15 km

0 105 15 km

In(workplaces) in deciles

–4.64–3.05
3.05–4.40
4.40–5.23
5.23–5.94
5.94–6.46
6.46–6.88
6.88–7.29
7.29–7.73
7.73–8.19
8.19–10.25

Population

0–5,000
5,000–10,000
10,000–15,000
15,000–20,000
20,000–25,000
25,000–30,000
30,000–35,000
35,000–39,925

FIGURE 3    Singapore: (a) population distribution and (b) workplace distribution.
(continued on next page)



12� Transportation Research Record 2564

for shadow prices holds only for MNL models; applications for other 
choice model approaches have not been proposed yet.
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